If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-8x-12=0
a = 4.9; b = -8; c = -12;
Δ = b2-4ac
Δ = -82-4·4.9·(-12)
Δ = 299.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{299.2}}{2*4.9}=\frac{8-\sqrt{299.2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{299.2}}{2*4.9}=\frac{8+\sqrt{299.2}}{9.8} $
| (6x+7)/3=22 | | 5(u-2)=-8u+42 | | 4^x=2x | | x2-14x=51 | | 12-3=5x+18 | | 2(c+4)=18 | | 4x-x=150 | | x(x+3)-2x=4x+4 | | a÷5+4=13 | | q-7=13 | | x/(1+0.05)+x/(1+0.06)^2+1/(1+0.06)^2=1 | | x4=3=8 | | -0.3y-0.6=ป | | 27^2x=3^x+10 | | (x-12)-7=-2x+8 | | 3x-15/2=4,5 | | 10-1(2y-3)=9-3y | | i(-i)=0 | | 0.3+10x+0.2=0.5 | | 0.8x-4.6=-2.2 | | 3x+2x-8=3x-X-8 | | x+3x-4x=4x-11 | | -0.845=(x-63)/12 | | 18-2=x-3x | | 18=14-2x | | 6x=4=16 | | 14-10=x | | 14-10-16=x | | -(4a+5)=15-2a | | x5+1=41 | | 4x=10-16 | | 7p-6|=|6p+32| |